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Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is
developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and
the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve
ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration
controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary
optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the
proposed technique.

1. Introduction

The vibration caused by severe pavement conditions not only
affects the normal use of vehicle-mounted instruments but
also damages the instruments, reduces ride ability, and even
threatens the safety of passengers and vehicles.Therefore, the
vibration control of the vehicle suspension is necessary.

Since people put forward higher requirements on the ride
comfort and the operational stability, the passive suspension
can not meet the current needs. However, the active suspen-
sion has outstanding advantage in the riding comfort and
operational stability. Therefore, the active suspension vibra-
tion control technique has attracted many scholars’ research
interests. To improve suspension performance on driver ride
comfort, integrated seat and suspension models and driver
body models were investigated [1, 2], in which the problems
of vibration control were studied. A nonlinear mathematical
model of the dynamic suspension system with two degrees of
freedom was developed and PID controller was designed for
a kind of air suspension system in [3]. An active suspension
system utilizing a low-cost high-performance linear switched
reluctance actuator with proportional-derivative control was
presented in [4]. To study the vibration control problems of

the vehicle suspension, 𝐻
∞

control theory was applied [5–
9], in which robust 𝐻

∞
control and linear matrix inequality

optimization method, nonfragile 𝐻
∞

control method, and
adaptive neurofuzzy inference system inverse magnetorheo-
logical damper model were used, respectively. Sliding mode
control strategy such as self-organizing fuzzy sliding-mode
control and adaptive sliding-mode control methods were
utilized in [10–12] to obtain vibration controllers for vehicle
suspension systems. Considering structured uncertainties
and unstructured uncertainties, adaptive robust controllers
were designed in [13, 14].

The response time of the controller, namely, the real-time
of the controller, is not considered in most of the research on
vibration control of active suspension. In this paper, consid-
ered control energy and response time, used optimal control
approach, optimal vibration control for tracked vehicle sus-
pension systems is studied. The model of active suspension
for tracked vehicle is established, optimal vibration controller
with exponential decay rate is designed, and the control effect
is demonstrated by numerical simulations.

The remainder of this paper is structured as follows.
In Section 2, we establish active suspension systems and
disturbance model. In Section 3, optimal vibration controller
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Figure 1: Quarter-car model with active suspension.

is designed for the suspension systems. In Section 4, numer-
ical experiments are presented. Finally, in Section 5 some
conclusions are drawn.

2. Suspension Systems and Disturbance Model

2.1. Mechanical Model of Suspension. Vehicle suspensions are
complex dynamic systems, and the responses of suspensions
are influenced by many factors. The suspension systems of
four-wheel drive and four-wheel steering vehicles, strictly
speaking, are eight degrees of freedom vibration systems.
Based on practical problem and principle of being sufficient
to analyze and study the vibration control for vehicle sus-
pensions, the mechanical model of quarter-car suspension
system with two degrees of freedom is investigated in this
paper, as shown in Figure 1 (see [15, 16]), in which 𝑚

𝑠
is the

sprung mass representing the tracked car chassis; 𝑚
𝑢
is the

unsprung mass representing the wheel assembly; 𝑘
𝑠
and 𝑏
𝑠

are stiffness and damping of the uncontrolled suspension,
respectively; 𝑘

𝑡
and 𝑏
𝑡
stand for stiffness and damping of the

wheel, respectively; 𝑥
𝑠
(𝑡) and 𝑥

𝑢
(𝑡) are the displacements of

the sprung and unsprung masses, respectively; 𝑥
𝑟
(𝑡) is the

road displacement input; 𝑢(𝑡) denotes the actuator control
force, which is normally generated by an actuator between the
two masses.

2.2. Dynamic Model of Suspension. Consider the quarter-car
suspension system with two degrees of freedom as shown in
Figure 1; the dynamic equations of𝑚

𝑠
and𝑚

𝑢
are given by

𝑢 (𝑡) = 𝑚
𝑠
�̈�
𝑠
(𝑡) + 𝑏

𝑠
[�̇�
𝑠
(𝑡) − �̇�

𝑢
(𝑡)] + 𝑘

𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)] ,

𝑢 (𝑡) = −𝑚
𝑢
�̈�
𝑢
(𝑡) + 𝑏

𝑠
[�̇�
𝑠
(𝑡) − �̇�

𝑢
(𝑡)] + 𝑘

𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]

− 𝑘
𝑡
[𝑥
𝑢
(𝑡) − 𝑥

𝑟
(𝑡)] − 𝑏

𝑡
[�̇�
𝑢
(𝑡) − �̇�

𝑟
(𝑡)] ,

(1)

where �̈�
𝑠
(𝑡) and �̇�

𝑠
(𝑡), respectively, are acceleration and

velocity of the sprung and unsprung masses; �̈�
𝑢
(𝑡) and �̇�

𝑢
(𝑡),

respectively, are acceleration and velocity of the unsprung
masses; �̇�

𝑟
(𝑡) is the road velocity.

Define the set of state variables for (1):
𝑥
1
(𝑡) = 𝑥

𝑠
(𝑡) − 𝑥

𝑢
(𝑡) ,

𝑥
2
(𝑡) = 𝑥

𝑢
(𝑡) − 𝑥

𝑟
(𝑡) ,

𝑥
3
(𝑡) = �̇�

𝑠
(𝑡) ,

𝑥
4
(𝑡) = �̇�

𝑢
(𝑡) ,

(2)

where 𝑥
1
(𝑡) is the suspension deflection, 𝑥

2
(𝑡) is the wheel

deflection, 𝑥
3
(𝑡) is the sprung mass velocity, and 𝑥

4
(𝑡) is

the unsprung mass velocity. Then, the state vector is in the
following form:

𝑥 (𝑡) = [𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑥
3
(𝑡) , 𝑥
4
(𝑡)]
𝑇

. (3)
The principal variables for the active suspension design

and evaluation are sprung mass acceleration �̈�
𝑠
(𝑡), which

determines the ride comfort; the suspension deflection𝑥
𝑠
(𝑡)−

𝑥
𝑢
(𝑡), which indicates the limit of the vehicle body motion;

and the wheel deflection 𝑥
𝑢
(𝑡)−𝑥

𝑟
(𝑡), which ensures the road

holding ability. To satisfy the performance requirements, the
controlled output vector is chosen as

𝑦
𝑐
(𝑡) = [

[

�̈�
𝑠
(𝑡)

𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)

𝑥
𝑢
(𝑡) − 𝑥

𝑟
(𝑡)

]

]

= [

[

�̈�
𝑠
(𝑡)

𝑥
1
(𝑡)

𝑥
2
(𝑡)

]

]

. (4)

Then, from motion equation (1), state variables (2),
state vector (3), and output vector (4), the dynamic system
model of vehicle suspension is rewritten in the state-space
representation:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐷𝑝 (𝑡) ,

𝑦
𝑐
(𝑡) = 𝐶𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑥 (0) = 𝑥
0
,

(5)

where 𝑝(𝑡) = �̇�
𝑟
(𝑡) is external input disturbance, and

𝐴 =

[
[
[
[
[
[
[
[

[

0 0 1 −1

0 0 0 1

−𝑘
𝑠

𝑚
𝑠

0
−𝑏
𝑠

𝑚
𝑠

𝑏
𝑠

𝑚
𝑠

𝑘
𝑠

𝑚
𝑢

−𝑘
𝑡

𝑚
𝑢

𝑏
𝑠

𝑚
𝑢

− (𝑏
𝑡
+ 𝑏
𝑠
)

𝑚
𝑢

]
]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[

[

0

0

1

𝑚
𝑠

−1

𝑚
𝑢

]
]
]
]
]
]
]

]

, 𝐷 =

[
[
[
[
[

[

0

−1

0

𝑏
𝑡

𝑚
𝑢

]
]
]
]
]

]

, 𝐵 =

[
[
[

[

1

𝑚
𝑠

0

0

]
]
]

]

,

𝐶 =

[
[
[

[

−𝑘
𝑠

𝑚
𝑠

0
−𝑏
𝑠

𝑚
𝑠

𝑏
𝑠

𝑚
𝑠

1 0 0 0

0 1 0 0

]
]
]

]

.

(6)
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Table 1: Road grades and PSDs.

Road grade A B C D E
𝐶
𝑠
(10−7m3/rad) 1 4 16 64 256

Road sort 𝑘 0 1 2 3 4

2.3. Disturbance Model. To evaluate the suspension charac-
teristics, the road profiles variability is taken into account.
According to the ISO 2631 standards, the road displacement
power spectral density (PSD) is approximately represented in
the formulation of

𝑆 (𝑊
1
) = 𝐶
𝑠
𝑊
1

−2

= 4
𝑘

× 10
−7

𝑊
1

−2

, (7)
where 𝑊

1
is the spatial frequency, 𝐶

𝑠
is the road roughness

constant, and 𝑘 denotes the sorts of road grade as shown in
Table 1.

Assume that the vehicle travels at a certain constant
horizontal velocity V

0
and the given road segment length

is 𝑙. The road disturbances are approximately considered
as periodic vibrations. Since vehicle wheels and the active
suspension system have the low pass filter characteristic, the
road displacement 𝑥

𝑟
(𝑡) can be approximately simulated by a

finite series sum

𝑥
𝑟
(𝑡) =

𝑖

∑

𝑗=1

𝜉
𝑗
(𝑡) ≜

𝑖

∑

𝑗=1

𝜙
𝑗
sin (𝑗𝜔

0
𝑡 + 𝜃
𝑗
) (8)

with amplitudes 𝜙
𝑗
and random phases 𝜃

𝑗
which follows a

uniform distribution in [0, 2𝜋]. According to the random
process theory, the 𝑗th average power is as follows:

𝑆 (𝑗Δ𝑊
1
) × Δ𝑊

1
=

𝜙
2

𝑗

2
. (9)

Hence, we get

𝜙
𝑗
= √2𝑆 (𝑗Δ𝑊

1
) Δ𝑊
1
=

2
𝑘

103𝑗

√
𝑙

10𝜋
. (10)

Choose the spatial frequency interval Δ𝑊
1
= 2𝜋/𝑙 and

then the time frequency internal𝜔
0
= 2𝜋V

0
/𝑙. Positive integer

𝑖 limits the considered frequency band, and in this simplified
model, it is generally lower than 20Hz.

Defining the disturbance state vector,

𝑤 (𝑡) = [𝑤
1
(𝑡) , 𝑤

2
(𝑡) , . . . , 𝑤

2𝑖
(𝑡)]
𝑇

= [𝜉
1
(𝑡) , . . . , 𝜉

𝑖
(𝑡) , ̇𝜉
1
(𝑡) , . . . , ̇𝜉

𝑖
(𝑡)]
𝑇

.

(11)

The road velocity disturbance 𝑝(𝑡) = �̇�
𝑟
(𝑡) is described by the

following exosystem:

�̇� (𝑡) = 𝐺𝑤 (𝑡) ,

𝑝 (𝑡) = 𝐹𝑤 (𝑡) ,

(12)

where

𝐺 = [
0 𝐼
𝑖

−Ω
2

0
] ∈ R

2𝑖×2𝑖

,

𝐹 = [
1, . . . , 1,⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

] ∈ R
1×2𝑖

,

(13)

in which Ω = diag{𝜔
0
, 2𝜔
0
, . . . , 𝑖𝜔

0
} ∈ R𝑖×𝑖. Evidently, the

pair (𝐹, 𝐺) is observable completely.

3. Optimal Vibration Controller Design

In order to study optimal vibration control problem for
tracked vehicles, we choose an average performance index for
system (5) as follows:

𝐽 = lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑒
2𝛼𝑡

[𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) + 𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡)] 𝑑𝑡, (14)

where 𝑄 = 𝐶
𝑇

𝐶 ∈ R4×4 are positive semidefinite matrices,
𝑅 ∈ R is a positive definite matrix, and 𝛼 ≥ 0 is exponential
decay rate, and if 𝛼 = 0, it is an ordinary optimal control
performance index. We can modify the values of 𝛼, 𝑄, and 𝑅
to satisfy the control purpose, such as the response time of the
control system and the balance between the control energy
and control effect.

The objective of this paper is to find a control law for
system (5) and make the value of the performance index (14)
minimum.

Then, we design vibration controller for system (5). The
optimal control law with exponential decay rate can be
presented in the following theorem.

Theorem 1. Consider the optimal control problem described by
system (5)with performance index (14); the optimal control law
exists and is unique. Its form is as follows:

𝑢
∗

(𝑡) = −𝑅
−1

𝐵
𝑇

[𝑃
1
𝑥 (𝑡) + 𝑃

2
𝑝 (𝑡) 𝑒

−𝛼𝑡

+ 𝑃
3
𝑝
𝜔
(𝑡) 𝑒
−𝛼𝑡

] ,

(15)

where 𝑃
1
is the unique positive definite solution of the following

Riccati matrix equation:

(𝐴 + 𝛼𝐼)
𝑇

𝑃
1
+ 𝑃
1
(𝐴 + 𝛼𝐼) − 𝑃

1
𝑆𝑃
1
+ 𝑄 = 0, (16)

where 𝑃
2
and 𝑃

3
are the unique solutions of the following

Sylvester matrix equations:

[(𝐴 + 𝛼𝐼)
𝑇

− 𝑃
1
𝑆]
2

𝑃
2
+ 𝑃
2
Ω
2

= − [(𝐴 + 𝛼𝐼)
𝑇

− 𝑃
1
𝑆] 𝑃
1
𝐷,

[(𝐴 + 𝛼𝐼)
𝑇

− 𝑃
1
𝑆]
2

𝑃
3
+ 𝑃
3
Ω
2

= 𝑃
1
𝐷,

(17)

in which 𝑆 = 𝑅−1𝐵𝑇,Ω = diag{Ω,Ω}, 𝑝
𝜔
(𝑡) = �̇�(𝑡) = 𝐹𝐺𝑤(𝑡).

Proof. Introduce model transform for the system (5) with
performance index (14):

𝑥 (𝑡) = 𝑥 (𝑡) 𝑒
𝛼𝑡

, �̃� (𝑡) = 𝑢 (𝑡) 𝑒
𝛼𝑡

, 𝑝 (𝑡) = 𝑝 (𝑡) , (18)

𝐴 = 𝐴 + 𝛼𝐼, 𝐵 = 𝐵, 𝐷 = 𝐷. (19)
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Then we have

̇̃𝑥 (𝑡) = �̇� (𝑡) 𝑒
𝛼𝑡

+ 𝛼𝑥 (𝑡) 𝑒
𝛼𝑡

= 𝐴𝑥 (𝑡) 𝑒
𝛼𝑡

+ 𝛼𝑥 (𝑡) 𝑒
𝛼𝑡

+ 𝐵𝑢 (𝑡) 𝑒
𝛼𝑡

+ 𝐷𝑝 (𝑡) 𝑒
𝛼𝑡

= 𝐴𝑥 (𝑡) + 𝐵�̃� (𝑡) + 𝐷𝑝 (𝑡) ,

(20)

𝐽 = lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑒
2𝛼𝑡

[𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) + 𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡)] 𝑑𝑡

= lim
𝑇→∞

1

𝑇
∫

𝑇

0

[(𝑥 (𝑡) 𝑒
𝛼𝑡

)
𝑇

𝑄(𝑥 (𝑡) 𝑒
𝛼𝑡

)

+(𝑢 (𝑡) 𝑒
𝛼𝑡

)
𝑇

𝑅 (𝑢 (𝑡) 𝑒
𝛼𝑡

)] 𝑑𝑡

= lim
𝑇→∞

1

𝑇
∫

𝑇

0

[𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) + �̃�
𝑇

(𝑡) 𝑅�̃� (𝑡)] 𝑑𝑡.

(21)

Applying the maximum principle to the optimal control
problem in (20) and (21), the optimal control law can be
written as

�̃�
∗

(𝑡) = −𝑅
−1

𝐵
𝑇

�̃� (𝑡) , (22)

where �̃�(𝑡) is the solution to the following two-point bound-
ary value problem:

−
̇̃
𝜆 (𝑡) = 𝑄 ̇̃𝑥 (𝑡) + 𝐴

𝑇

�̃� (𝑡) ,

̇̃𝑥 (𝑡) = 𝐴𝑥 (𝑡) − 𝑅
−1

𝐵
𝑇

�̃� (𝑡) + 𝐷𝑝 (𝑡) ,

𝑥 (0) = 𝑥
0
𝑒
𝛼𝑡

,

�̃� (∞) = 0.

(23)

To solve (23), let

�̃� (𝑡) = 𝑃
1
𝑥 (𝑡) + 𝑃

2
𝑝 (𝑡) + 𝑃

3
𝑝
𝜔
(𝑡) . (24)

Substituting the equations of (20) and (22) into the first
derivatives of (24), we get

̇̃
𝜆 (𝑡) = 𝑃

1

̇̃𝑥 (𝑡) + 𝑃
2

̇̃
𝑝 (𝑡) + 𝑃

3

̈̃
𝑝 (𝑡)

= (𝑃
1
𝐴 − 𝑃

1
𝑆𝑃
1
) 𝑥 (𝑡) + (𝑃

1
𝐷 − 𝑃

1
𝑆𝑃
2
) 𝑝 (𝑡)

+ (𝑃
2
− 𝑃
1
𝑆𝑃
3
)
̇̃
𝑝 (𝑡) + 𝑃

3

̈̃
𝑝 (𝑡) .

(25)

Note that

𝑝
𝜔
(𝑡) = 𝑝

𝜔
(𝑡) = �̇� (𝑡) ,

̈̃
𝑝 (𝑡) = �̈� (𝑡) = 𝐺

2

𝑝 (𝑡)

= −[
Ω
2

0

0 Ω
2
]𝑝 (𝑡)

= −Ω
2

𝑝 (𝑡) .

(26)

From (23) and (24), we obtain

̇̃
𝜆 (𝑡) = − (𝑄 + 𝐴

𝑇

𝑃
1
) 𝑥 (𝑡) − 𝐴

𝑇

𝑃
2
𝑝 (𝑡) − 𝐴

𝑇

𝑃
3
𝑝
𝜔
(𝑡) . (27)

Adding (26) into (25), then comparing the coefficients of
(25) and (27), we obtain matrix equations:

𝐴
𝑇

𝑃
1
+ 𝑃
1
𝐴 − 𝑃

1
𝑆𝑃
1
+ 𝑄 = 0,

𝐴
𝑇

𝑃
2
+ 𝑃
1
𝐷 − 𝑃

3
Ω
2

− 𝑃
1
𝑆𝑃
2
= 0,

𝐴
𝑇

𝑃
3
+ 𝑃
2
− 𝑃
1
𝑆𝑃
3
= 0.

(28)

Then, adding the model transform (18), we can obtain

(𝐴 + 𝛼𝐼)
𝑇

𝑃
1
+ 𝑃
1
(𝐴 + 𝛼𝐼) − 𝑃

1
𝑆𝑃
1
+ 𝑄 = 0,

[(𝐴 + 𝛼𝐼)
𝑇

− 𝑃
1
𝑆]
2

𝑃
2
+ 𝑃
2
Ω
2

= − [(𝐴 + 𝛼𝐼)
𝑇

− 𝑃
1
𝑆] 𝑃
1
𝐷,

[(𝐴 + 𝛼𝐼)
𝑇

− 𝑃
1
𝑆]
2

𝑃
3
+ 𝑃
3
Ω
2

= 𝑃
1
𝐷.

(29)

In the following, we prove the existence and uniqueness
of the optimal control law. In fact, it is equivalent to prove the
existence and uniqueness of thematrices𝑃

1
,𝑃
2
, and𝑃

3
. It was

well known that the matrix 𝑃
1
is existent and unique.

According to the linear regulator theory, it follows that

Re 𝜆
𝑖
[(𝐴 + 𝛼𝐼)

𝑇

− 𝑃
1
𝑆] < −𝛼 < 0, 𝑖 = 1, 2, . . . , 𝑛. (30)

Suppose that

𝜆
𝑖
[(𝐴 + 𝛼𝐼)

𝑇

− 𝑃
1
𝑆] = −𝛼

𝑖
+ 𝑗𝛽
𝑖
, (31)

where 𝛼
𝑖
> 0, 𝛽

𝑖
∈ 𝑅, 𝑗 = √−1. Therefore, we have

𝜆
𝑖
[(𝐴 + 𝛼𝐼)

𝑇

− 𝑃
1
𝑆]
2

= {𝜆
𝑖
[(𝐴 + 𝛼𝐼)

𝑇

− 𝑃
1
𝑆]}
2

= 𝛼
2

𝑖
− 𝛽
2

𝑖
− 𝑗2𝛼

𝑖
𝛽
𝑖
.

(32)

Due to Ω = diag(Ω,Ω), we obtain

𝜆
𝑗
(−Ω
2

) ≤ 0, 𝑗 = 1, 2, . . . , 2𝑚. (33)

Assume that there is a certain 𝜆
𝑖
(𝐴 − 𝑆𝑃

1
)
2

= 𝜆
𝑗
(−Ω
2

); from
(32) and (33), we have a certain 𝛼

𝑖
= 0 at least. It is contrary

to 𝛼
𝑖
> 0. Namely, 𝜆

𝑖
(𝐴 − 𝑆𝑃

1
)
2

̸= 𝜆
𝑗
(−Ω
2

).
Hence, 𝑃

2
and 𝑃
3
, the solution of Sylvester matrix (17), are

existent and unique [17].
When thematrices𝑃

1
,𝑃
2
, and𝑃

3
are derived, �̃�(𝑡) and the

optimal control law �̃�
∗

(𝑡) can be obtained from (24) and (22),
respectively. According to model transform (19), the optimal
control law (15) is obtained.

4. Numerical Simulations

In this section, we apply the proposed optimal vibration
controller to a tracked vehicle. The model parameters have
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Table 2: Parameters of quarter-car model.

Parameter Variable Value Unit
Sprung mass 𝑚

𝑠
972.2 kg

Unsprung mass 𝑚
𝑢

113.6 kg
Suspension stiffness 𝑘

𝑠
42,719.6 N/m

Wheel stiffness 𝑘
𝑡

101,115 N/m
Suspension damping 𝑏

𝑠
1,095 N⋅s/m

Wheel damping 𝑏
𝑡

14.6 N⋅s/m
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Figure 2: Road displacement curve.

the values listed in Table 2 which have been used in some
references [15, 16]. The associated matrices of system (5) are
as follows:

𝐴 =

[
[
[

[

0 0 1 −1

0 0 0 1

−43.9412 0 −1.1263 1.1263

376.0528 −890.0968 9.6391 −9.7676

]
]
]

]

,

𝐵 =

[
[
[

[

0

0

0.001

−0.0088

]
]
]

]

, 𝐷 =

[
[
[

[

0

0

0

0.1285

]
]
]

]

,

𝐶 = [

[

−43.9412 0 −1.1263 1.1263

1 0 0 0

0 1 0 0

]

]

, 𝐵 = [

[

0.001

0

0

]

]

.

(34)

To generate D grade road profile, we select 𝐶
𝑠
= 64 ×

10
−7m3/rad and 𝑘 = 3 in Table 1. Setting V

0
= 20m/s, 𝑙 =

400m, and 𝑖 = 200 in (8) and (10) takes the frequency band
from 0.05Hz to 10Hz.

Using MATLAB software, numerical experiment is car-
ried out for the proposed optimal vibration controller.
Figure 2 shows the road displacement curve.

The main purpose of vibration control of vehicle suspen-
sions is to reduce sprung mass acceleration to enhance ride
comfort, to reduce the suspension deflection which indicates
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Figure 3: Sprung mass acceleration curves.
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Figure 4: Suspension deflection curves.

the limit of the vehicle body motion, and to reduce the
wheel deflection to ensure road holding ability. So, to evaluate
effectiveness of the proposed control strategy, sprung mass
acceleration, suspension deflection, and wheel defection are
considered. In order to demonstrate the effect of the proposed
optimal vibration controller (𝛼 = 1), we compare it with other
two control strategies: open loop and traditional optimal
control (𝛼 = 1), see Figures 3–6.

The curves of sprung mass acceleration �̈�
𝑠
(𝑡) are shown

in Figure 3, suspension deflections 𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡) are shown

in Figure 4, and wheel deflections 𝑥
𝑢
(𝑡) − 𝑥

𝑟
(𝑡) are shown

in Figure 5, in which dash lines represent the open loop
results of the suspension systems, dotted lines represent the
traditional optimal vibration control results, and solid lines
describe the results of the suspension systems controlled by
the proposed control strategy. It can be seen from these
numerical results that the proposed optimal controller with



www.manaraa.com

6 Mathematical Problems in Engineering

0 5 10 15 20 25
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

W
he

el
 d

efl
ec

tio
n 

(m
)

Open loop curve
Optimal control curve
Proposed control curve

Figure 5: Wheel deflection curves.
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Figure 6: Control force curves.

exponential decay rate is efficient, real-time, and robust in
reducing sprung mass acceleration and suspension deflec-
tion, thereby enhancing ride comfort and ensuring safety of
passengers and vehicles. Moreover, in Figure 6, it demon-
strates that it needs less control forces than traditional
optimal vibration control; therefore, it needs less energy.

5. Conclusions

Suspension control plays an important role in the modern
vehicle and is one of the very important components to
provide the ride comfort, in particular, to reduce driver
fatigue due to long hours of driving. In order to enhance
the ride comfort and ensure the safety of passengers and
vehicles, dynamic system for a class of tracked vehicle
suspension vibration control is established and a kind of
optimal controller with exponential decay rate is designed.
Numerical simulations demonstrated that the proposed strat-
egy is efficient, real-time, and robust.
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